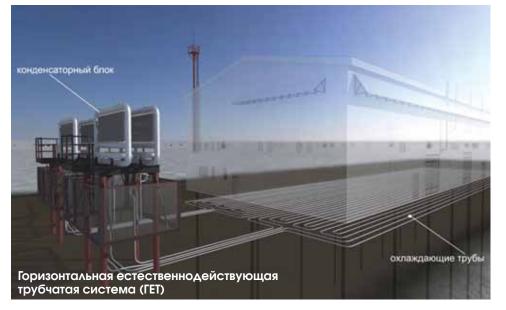


СОХРАНЯЯ ВЕЧНОЕ — СТРОИМ БУДУЩЕЕ


Неблагоприятные климатические условия северных регионов создают множество проблем при строительстве зданий и сооружений. Природные богатства Сибири вовлекаются в хозяйственный оборот, на вечномерзлых грунтах возникают города и поселки, что влияет на устойчивость северных природных систем.

На сегодняшний день расширение площадей распространения деструктивных криогенных процессов наблюдается во всех городах России, стоящих на вечной мерзлоте. Они выражаются в разрушении фундаментов, неравномерной осадке и даже обрушении зданий, а также в провалах шоссе, железнодорожных путей, блоков подземных коллекторов коммунальных сетей, в формировании просадочных рытвин и увеличении зон заболачивания городских территорий. Сотрудниками НПО «Фундаментстройаркос» разработан ряд технических решений, позволяющих предотвратить геокриогенные разрушения городских территорий путем применения уникальных наукоемких технологий термостабилизации грунтов.

В настоящее время термостабилизирующие системы НПО «Фундаментстройаркос» поддерживают в мерзлом состоянии в общей сложности 28 млн кубометров грунта на площади 2,8 млн кв. метров, охватывая пространство от Нарьян-Мара до Чукотки. И это, с учетом масштабных планов по освоению месторождений Крайнего Севера и Чукотки, только начало.

Постоянство развития

Более 20 лет Научно-производственное объединение «Фундаментстройаркос» занимает лидирующие позиции в разработке и применении систем температурной стабилизации грунтов оснований. Научный потенциал, приобретенный специалистами НПО «Фундаментстройаркос» в процессе многолетней работы, обобщение мирового опыта и собственные исследования позволяют

СЕМЕН ВЕЛЬЧЕВ

Первый заместитель генерального директора НПО «Фундаментстройаркос»

СЕРГЕЙ ОКУНЕВ

Главный инженер НПО «Фундаментстройаркос»

ОЛИЧ РАЛИ

Начальник научной части НПО «Фундаментстройаркос»

компании предоставлять наиболее эффективные на сегодняшний день технические решения в области температурной стабилизации грунтов. Применение данных технологий дает возможность сократить сроки и стоимость возведения нулевого цикла, сократить площадь застройки, а также обеспечить надежную эксплуатацию объектов строительства.

Сотрудниками организации разработаны четыре основных вида сезонно-действующих охлаждающих устройств: индивидуальные термостабилизаторы, горизонтальные и вертикальные естественнодействующие трубчатые системы (системы ГЕТ и ВЕТ), глубинные охлаждающие устройства. Принцип действия термостабилизирующих устройств заключается в переносе естественного холода к основанию фундамента, благодаря чему в вечной мерзлоте поддерживается неизменная температура, грунт не растепляется от теплового воздействия зданий или в результате сложных процессов, происходящих в подземных слоях. Устройства не требуют затрат электроэнергии, их действие основано на использовании силы тяжести и разницы температур грунта и воздуха. В качестве хладагента используется аммиак или углекислота, которые перекачиваются по системе естественным образом, перенося тепло от грунта к надземной конденсаторной части.

Использование запатентованных разработок компании — систем ГЕТ и ВЕТ — позволяет с наименьшими капиталовложениями на стадии нулевого цикла выполнить фундаменты различных зданий и сооружений и в дальней-

шем снизить затраты на их эксплуатацию в экстремальных с точки зрения геокриологии природноклиматических условиях Крайнего Севера. Экономическая эффективность применения систем температурной стабилизации грунтов составляется от 20% до 50% стоимости нулевого цикла по сравнению с использованием проветриваемых подполий.

Технические решения НПО «Фундаментстройаркос» широко используются почти на всех нефтегазовых объектах страны, расположенных в северных широтах. Они с успехом внедрены на месторождениях более 350 нефтегазовых объектов ведущих компаний России: ОАО «Газпром» (в Уренгое, Надыме, Ямбурге, Югорске, полуострове Ямал), ОАО «НК «ЛУКОЙЛ» и ОАО «НК «Роснефть», ОАО «АК «Транснефть», алмазодобывающее предприятие АК «Алроса», золотодобывающее предприятие ОАО «Полиметалл», городские администрации таких северных городов, как, например, Новый Уренгой, Салехард, Надым, Лабытнанги, Мирный.

Новые решения прежних задач

До недавнего времени рабочим веществом или хладагентом термостабилизирующих систем выступал аммиак. Поскольку по степени токсичности аммиак относится к IV классу опасности, применение таких систем было возможно преимущественно при строительстве промышленных зданий и сооружений.

В 2013 году ученые и инженеры НПО «Фундаментстройаркос» адаптировали системы замораживания грунта под углекислоту хладагент, который при ограниченной заправке абсолютно безопасен даже в случае разгерметизации системы (Разрешение № РРС 00-042201 на применение оборудования: «Системы и установки криогенные по ТУ 3642-004-54098700-2006», выданное Федеральной службой по экологическому, технологическому и атомному надзору от 11.02.11). С появлением новых разработок открывается возможность строительства зданий и сооружений гражданского назначения на вечномерзлом

Табл. №1. Работа аммиачной и углекислотной термостабилизирующих систем

Система ГЕТ	Нагрузка Температура, °С					Скорость
	q, Вт/м	Средняя температура на испарителе	Оребрение блока		Температура воздуха	ветра, м/с
		Т _{средняя}	Верх	Низ		
NH ₃	5,0	-5,1	-7,8	-7,8	-7,9	3,5
CO ₂	5,1	-6,3	-6,7	-6,7	-7,5	1,9
NH ₃	10,1	-6,7	-7,1	-7,2	-9,8	3,0
CO ₂	10,2	-8,6	-9,0	-8,5	-10,0	2,5
NH ₃	20,5	-6,1	-7,0	-7,1	-10,4	9,0
CO ₂	20,1	-7,7	-8,4	-8,2	-9,8	12,0
NH ₃	30,0	-3,1	-4,8	-4,8	-14,0	0,8
CO ₂	30,2	-9,6	-11,3	-11,9	-13,9	0,5

Примечание: одним цветом выделены одинаковые по условиям проведения эксперименты

грунте без проветриваемых под- ря

полий; системы безопасны и дол-

говечны.

В Таблице №1 показан сравнительный анализ работы аммиачной и углекислотной термостабилизирующих систем. Эксперименты проводились в широком диапазоне изменения параметров процессов охлаждения грунтов: тепловая нагрузка 5-50 Вт/м, скорость ветра 0,5-12 м/с, температура воздуха минус 7-15°C. При сравнительно одинаковых параметрах процессов, в случаях работы углекислотной системы по сравнению с аммиачной, значительно больше понижается температура поверхности испарителя, примерно на 0,8-6,5°C. Причем, с увеличением нагрузки эта разница увеличивается, что объясняется различием теплофизических свойств хладагентов и обеспечивает более обширный охлаждающий эффект, который расширяет границы вечной мерзлоты и понижает температуру грунта.

Устройства не требуют затрат электроэнергии, их действие основано на использовании силы тяжести и разницы температур грунта и воздуха

Данные технические решения направлены на разработку про-

Экономическая эффективность применения систем температурной стабилизации грунтов составляет от 20% до 50% стоимости нулевого цикла по сравнению с использованием проветриваемых подполий

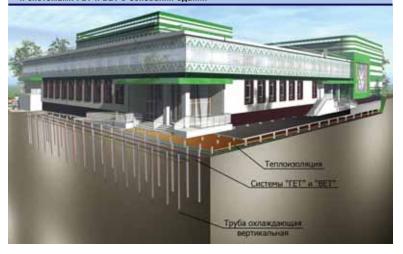
ектных решений, обеспечивающих рациональное использование

и удобство в эксплуатации зданий и сооружений жилищно-гражданского назначения, расположенных в районах распространения многолетнемерзлых грунтов. Удобства создаются за счет ликвидации проветриваемого подполья и устройства вместо него теплого технического этажа, используемого для различных коммунальных целей, таких как:

- теплого подполья с размещением в нем инженерных коммуникаций (рис.1,2);
- стоянки легковых автомобилей (рис.3);
- складских помещений и других помещений нежилого характера.

С появлением новых разработок открывается возможность строительства зданий и сооружений гражданского назначения на вечномерзлом грунте

Устройство систем термостабилизации в основаниях зданий и сооружений жилищно-гражданского назначения при строительстве свайных фундаментов на вечномерзлых грунтах позволяет:


- исключить проветриваемое подполье под зданиями;
- снизить затраты на строительство свайных фундаментов и систем температурной стабилизации грунтов;
- снизить затраты на эксплуатацию инженерных сетей за счет их размещения в отапливаемых помещениях;
- обеспечить надежность основания за счет резервных систем и возможности подключения холодильных машин;
- сократить высоту и длину крылец и пандусов;
- рационально и функционально использовать внутридворовое пространство жилой, смешанной и общественно-деловой застройки;
- предусматривать комплексное использование надземного или подземного пространства для размещения в нем стоянок автотранспорта, складских помещений и других теплых технических помещений.

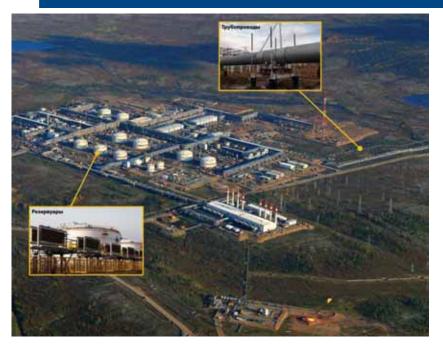


Рис.1 Жилой дом с техническим этажом и системами ГЕТ и ВЕТ в основании здания

Рис.2 Культурно-спортивный комплекс с теплым техническим этажом и системами ГЕТ и ВЕТ в основании здания

ционных технологий в развитие новых северных территорий. Уже сейчас термостабилизирующие системы компании поддерживают

На единственном в России мерзлотном опытно-промышленном полигоне компании «Фундаментстройаркос» построено более двадцати опытно-промышленных экспериментальных установок и систем, многие из которых являются уникальными и единственными в мире

в мерзлом состоянии в общей сложности 28 млн кубометров грунта на площади 2,8 млн кв. метров, охватывая пространство от Нарьян-Мара до Чукотки. И

Опора для будущего

Научно-производственное объединение «Фундаметстройаркос» — это пример экономически эффективного слияния науки и производства. Создатель уникальных систем термостабилизации вечномерзлого грунта, широко применяемых на большинстве нефтегазовых месторождений страны, сегодня продолжает активное развитие, наращивая мощности и технический потенциал, совершенствуя производственный процесс.

Так, в 2013 году ровно в два раза увеличилась площадь одной из трех производственных баз, общая территория которых теперь составляет более 9га. Построенные в сжатые сроки цеха — это дополнительные 7000 кв. метров производственных площадей, позволяющие увеличить объемы производства и применять не только освоенные, но и новые технологии.

Существенную помощь в разработке инновационных изделий оказывает единственный в России мерзлотный опытно-промышленный полигон НПО «Фундаментстройаркос», расположенный в Тюмени. На нем имеются экспериментальные установки и термостабилизирующие системы, выполненные в натуральную величину и служащие для изучения, моделирования и исследова-

Рис.З Торговый центр с теплой подземной автостоянкой и системами ГЕТ и ВЕТ в основании здания

ния теплофизических и теплогидравлических процессов, протекающих в различных узлах, конструкциях и системах. Всего на полигоне построено более двадцати опытно-промышленных экспериментальных установок и систем, многие из которых являются уникальными и единственными в мире. Со всех измерительных приборов, размещенных на них, налажен автоматизированный сбор данных, обрабатываемых и анализируемых в лабораторном корпусе.

В планах НПО «Фундаментстройаркос» внедрение инноваэто, с учетом масштабных планов по освоению месторождений

В 2013 году ровно в два раза увеличилась площадь одной из трех производственных баз, общая территория которых теперь составляет более 9 га

Крайнего Севера, только начало. День за днем технические решения, разработанные НПО «Фундаментстройаркос», создают прочную опору для будущего Северного региона нашей страны.