НОВОЕ НАПРАВЛЕНИЕ

ПРОЦЕССА ОБЛАГОРАЖИВАНИЯ НИЗКООКТАНОВЫХ УГЛЕВОДОРОДНЫХ ФРАКЦИЙ

Е.А. ЗЕЛЕНСКАЯ

Инженер ЗАО «НИПИ «ИнжГео», аспирант Кубанского государственного технологического университета, г. Краснодар, Россия

Т.В. ЗЕЛЕНСКАЯ

К.т.н., доцент Кубанского государственного технологического университета, г. Краснодар, Россия

Повышение октановой характеристики автомобильных топлив наряду с улучшением их экологических показателей играют ведущую роль среди проблем нефтехимии и нефтепереработки сегодняшнего дня. Использование органически модифицированных цеолитных катализаторов в процессе облагораживания низкооктановых углеводородных фракций — один из возможных вариантов решения данных проблем, напрямую связанный с развитием и техническим совершенствованием процесса облагораживания в целом, а также повышением качества автомобильного топлива и снижением экологической нагрузки на окружающую среду.

а сегодняшний день огромную популярность в процессах глубокой переработки нефти завоевали гетерогенные цеолитсодержащие катализаторы различных марок. Благодаря уникальной геометрии, сочетанию объемной структуры, состоящей из развитой системы полостей и каналов, и каталитических свойств они находят широкое применение во многих процессах получения товарных нефтепродуктов на основе углеводородного сырья. В последние годы в нефтехимическом катализе постоянно используются каталитические среды в виде солей органической природы, проявляющих значительную каталитическую активность в определенном диапазоне температур. Такие соли, как правило, образованные органическими катионами и имеющие обширную систему сопряжений в молекуле, принято называть ионными жидкостями вследствие проявления их максимальной активности в жидком агрегатном состоянии.

Основной целью настоящего исследования является определение возможности применения данных соединений в качестве модифицирующей добавки цеолитсодержащих катализаторов нефтепереработки, подбор оптимального состава каталитической системы, а также установление оптимальных параметров процесса облагораживания низкооктановых бензиновых фракций с использованием органически модифицированного катализатора*.

*Работа выполнена в рамках реализации Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг.

В данной работе исследовалась возможность использования органических солей с развитой системой сопряжения, обладающих свойствами ионных жидкостей в исследуемом температурном интервале в качестве модифицирующей добавки к цеолитсодержащему катализатору при облагораживании прямогонных бензиновых фракций. Здесь

выбор модифицирующих добавок был обусловлен возможностью сочетания свойств солей органической природы, похожих по структуре на ионные жидкости, с молекулярно-ситовыми свойствами цеолитсодержащих катализаторов.

Исследования проводились на лабораторной установке при атмосферном давлении, в температурном интервале — 50-200°C. В работе использовался цеолитсодержащий катализатор в Н-форме марки ЦВК-ТМ-1327, выпущенный ЗАО «Нижегородские сорбенты» с нанесенным на него модифицирующим агентом. Сырьем установки являлась бензиновая фракция с пределом выкипания НК-200°C, полученная разгонкой газового конденсата месторождения Прибрежное Краснодарского края, отличительной особенностью которого является очень низкое содержание сернистых соединений, вследствие чего предварительная подготовка сырья не требуется. Октановое число бензиновой фракции НК-200°C составило 52 пункта по моторному методу; коэффициент рефракции n²⁰ = 1,4035, плотность p_4^{20} = 0,744 кг/м³.

Групповой состав бензиновой фракции НК-200°С, используемой в качестве сырья для данной лабораторной установки, приведен в табл.1.

Качественный состав продуктов облагораживания, в частности жидкая фракция, анализировался хроматографическим методом. Помимо этого определя-

Табл.1 Групповой состав прямогонного бензина HK-200°C, полученного разгонкой газового конденсата месторождения Прибрежное Краснодарского края

Класс углеводородов	Алканы	Изоалканы	Нафтены	Арены	Алкены	Прочие
Содержание углеводородов в исходном сырье, %	35,834	25,841	22,821	15,152	0,0523	0,2997

лись такие свойства продуктов, как выход на пропущенное сырье, показатель преломления, октановое число, по моторному методу.

Результаты хроматографического анализа состава катализата, полученного при облагораживании прямогонной бензиновой фракции, представлены в виде столбчатой диаграммы на рис.1.

Согласно данным хроматографического анализа, в составе катализата, полученного при температуре 150°C, наблюдается увеличение количества алканов изомерного строения, позволяющее предположить, что в реакционной системе присутствуют превращения как по радикальному, так и по ионному механизмам, и образующиеся при более низкой температуре алкены успевают претерпеть изомеризацию с последующим гидрированием. Также возможен расход образующихся в процессе облагораживания алкенов на реакции алкилирования и димеризации. В данном случае уместно предположение, что именно увеличение количества изомерных алканов обусловливает значительное повышение октанового числа (до 66 пунктов по моторному методу) в ходе реакции, т.к. в продукте, являющемся компонентом моторного топлива, низко содержание ароматических углеводородов, из которых на долю бензола приходится менее 0,5%.

Одним из возможных объяснений полученных результатов является существенное повышение количества активных центров, образующихся при обработке каталитической поверхности катионами сильной кислоты. Однако здесь стоит отметить, что при проведении аналогичного эксперимента с нанесением на исходный катализатор сильной кислоты (хлорной) стабильные результаты получены не были. В данном случае причиной прекращения работы катализатора явилась потеря его активности в связи с быстрым образованием кокса на активных центрах. Для сравнения стоит отметить, что образец с нанесенной на него хлорной кислотой проработал около пяти часов, в то время как образец с нанесенной на него органической солью продолжал сохранять каталитическую активность в течение более длительного времени.

Безусловно, стоит отметить, что данные реакции облагораживания проводились при достаточно мягких условиях, а значит, при использовании таких контактов в промышленных масштабах можно говорить о значительном снижении тепловой нагрузки экосистемы и создании основы для нового процесса «зеленой химии». Кроме того обращает на себя

внимание высокое качество полученного катализата, а именно высокое содержание в нем изомерных алканов и достаточно низкое количество ароматических соединений, присутствие которых в товарном продукте ограничено экологическими тре-

Рис. 1 Групповой состав продуктов облагораживания прямогонной бензиновой фракции HK-200°C

бованиями международных стандартов. Таким образом, одним из возможных решений проблемы экологически чистого производства высокооктанового качественного автомобильного топлива из продуктов первичной переработки нефтяного и газоконденсатного сырья является использование низкотемпературных расплавов солей в качестве промотирующих агентов цеолитсодержащих катализаторов.

Список использованной литературы

- 1. Гуреев, А.А. Производство высокооктановых бензинов [Текст] / А.А. Гуреев, Ю.М. Жоров, Е.В. Смидович. М.: Химия, 1981. 224 с.
- 2. Мовсумзаде, Э.М. Цеолиты зарождение и пути их использования [Текст] / И.С. Елисеева, М.Л. Павлов, Е.М. Савин. // Нефтехимия, 1985.- №5. С. 63–77.
- 3. Наймарк, И.Е. Синтетические минеральные адсорбенты и носители катализаторов [Текст] / И.Е. Наймарк Киев: Наука думка, 1982. 216 с.
- 4. Зеленская Е.А. Исследование влияния модифицирующих добавок на характеристики продуктов облагораживания прямогонной бензиновой фракции // Экспозиция. Нефть. Газ № 4. 2011. С. 31–32.
- Зеленская Е.А., Ясьян Ю.П., Завалинская И.С., Илларионова В.В. Исследование процесса облагораживания низкооктановой бензиновой фракции на органически модифицированных цеолитных катализаторах // Экспозиция. Нефть. Газ № 5. 2011. С. 48.
- Зеленская Е.А., Ясьян Ю.П., Завалинская И.С., Исследование влияние термического воздействия на характеристики продуктов каталитического облагораживания прямогонной бензиновой фракции// Нефтяное хозяйство № 5. 2012. С.116–117