

ГИДРОПРИВОДНЫЕ НАСОСЫ ДЛЯ ОСЛОЖНЕННЫХ УСЛОВИЙ

АЛЕКСАНДР ДРОЗДОВ
Член-корреспондент РАЕН,
д.т.н., профессор РГУ нефти
и газа им. И.М.Губкина,
руководитель научнообразовательного центра
«СМЕНА»

идроструйные насосы просты по конструкции, надежны, невелики по размерам.

В России гидроструйные насосы нашли наибольшее применение на Самотлорском месторождении. По заказу «Самотлорнефтегаза» нами была разработана беспакерная компоновка гидроструйного насоса с двухрядным лифтом

При этом им не страшны ни искривления скважин, ни высокие температуры, ни влияние свободного газа. Недостатками струйных насосов являются относительно низкий кпд, который в луч-

В данной технологии полностью сохранены все преимущества гидроструйных насосов: надежная эксплуатация, длительный межремонтный период, в несколько раз превышающий данный показатель для установок СШН

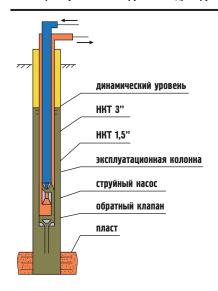
Проблема эксплуатации осложненного низкодебитного фонда скважин остро стоит практически перед всеми нефтяными компаниями. В этих условиях наработка традиционных для России видов погружного насосного оборудования — установок погружных центробежных и скважинных штанговых насосов, — как показывает практика, существенно снижается.

В мире считается, что наилучшими вариантами в таких осложненных условиях эксплуатации является добыча нефти с помощью гидроприводных насосов — гидропоршневых и гидроструйных. Но в России в настоящее время нет ни одной скважины, оборудованной гидропоршневым насосом. Ограниченно применяются лишь гидроструйные погружные установки.

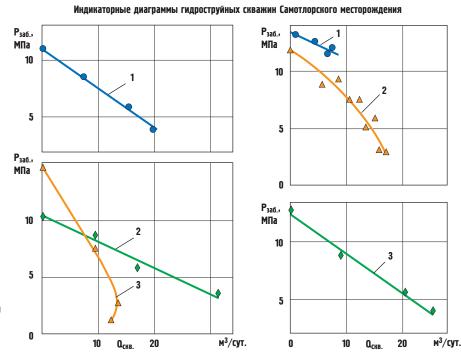
ших конструкциях не превышает 40–45%, а также необходимость наличия силовой станции для привода насоса в действие. Однако эти недостатки отходят на второй план в тех случаях, когда не удается эксплуатировать скважины другими способами.

Характеристики струйного насоса при откачке газожидкостной смеси свидетельствуют о том, что насос устойчиво работает и не срывает подачу даже при входном газосодержании 90%. При этом зависимость коэффициента подачи от входного газосодержания для струйного насоса гораздо выше, чем для погружного центробежного, винтового или даже вихревого насоса. И связано это с особенностями рабочего процесса струйного аппарата.

При проведении экспериментальных исследований нам удалось получить характеристики струйных аппаратов с коэффициентом полезного действия в оптимальном режиме более 45%. Эти характеристики были получены при откачке 100%-ного газа (не газожидкостной смеси) струей жидкости.


В России

В России гидроструйные насосы нашли наибольшее применение на Самотлорском месторождении. По заказу «Самотлорнефтегаза» нами была разработана беспакерная компоновка гидроструйного насоса с двухрядным лифтом (см. «Беспакерная установка...»). Она обеспечивает возможность контроля динамического уровня; отсутствие пакера позволяет избежать связанных с ним проблем; существуют возможности для оптимизации режимов работы скважин.


В данной технологии полностью сохранены все преимущества гидроструйных насосов: надежная эксплуатация, длительный межремонтный период, в несколько раз превышающий данный показатель для установок СШН.

Промысловые исследования показали, что гидроструйные насосы могут устойчиво работать даже при очень низких забойных давлениях, даже ниже 3 МПа. Наименьшее забойное давление было отмечено в районе 1,8 МПа на скважинах Самотлорского месторождения (пласт «Рябчик»).

Особый интерес представляют результаты применения гидроструйных насосов в осложненных скважинах юрских пластов Самотлорского месторождения (см. «Параметры эксплуатации беспакерных компоновок ГСН в скважинах 259, 534 и 537...»). Приведенные параметры работы некоторых скважин показывают, что установки работают с динамиче-

В ОАО «Самотлорнефтегаз» средняя наработка на отказ по гидроструйному фонду составляет 2371 сутки, в то время как по скважинам, оборудованным штанговыми глубинными насосами, — всего 356 суток

скими уровнями от 2092 до 2293 метров при глубине спуска струйного насоса 2300 метров, и никакого срыва подачи не происходит. Нефтяникам понятно, что в таких условиях оборудованию работать крайне трудно.

Несмотря на то, что в конструкции самих гидроструйных насосов нет ничего особо сложного, широкому распространению гидроприводных способов добычи сильно мешает то, что применяемые в большинстве случаев силовые станции очень дороги, металлоемки и ненадежны в работе.

В настоящее время применяются, в основном, станции с плунжерными насосами. Это дорогостоящее импортное оборудование, требующее качественного обслуживания, что ведет к значительному увеличению затрат на сервис. Нефтяники вынуждены

платить примерно 4500 рублей в сутки на обслуживание каждой скважины, оборудованной ГСН, что мало привлекательно с экономической точки зрения.

ЭЦН — альтернатива плунжеру

Однако гидроприводные (гидропоршневые и гидроструйные) насосы необязательно приводить в действие от плунжерных насосов. В мире имеется опыт применения в этих целях многоступенчатых центробежных насосов. Мы тоже предложили одну из технологических схем гидроструйной эксплуатации скважин с приводом от погружного центробежного насоса, расположенного в специальном шурфе (см. «Технологическая схема...»). При этом на поверхности установлен центро-

бежный сепаратор механических примесей. Представленная компоновка была смонтирована на

Гидроприводные (гидропоршневые и гидроструйные) насосы необязательно приводить в действие от плунжерных насосов. В мире имеется опыт применения в этих целях многоступенчатых центробежных насосов

одном из кустов Самотлорского месторождения.

Данная силовая мини-станция успешно прошла опытно-промышленные испытания. При рассмотрении параметров четырех скважин, оборудованных гидроструйными насосами (см. «Параметры эксплуатации беспакерных компоновок ГСН в скважинах 70002Г.

Параметры эксплуатации беспакерных компоновок ГСН в скважинах 259, 534 и 537 пласта ЮВ1 Самотлорского месторождения

№ СКВ.	Интервалы перфорации, м	Глубина спуска струйного насоса, м	Глубина спуска хвостовика, м	Дата замера	Давление нагнетания рабочей жидкости, МПа	Расход рабочей жидкости, м³/сут	Динамический уровень, м	Затрубное давление, МПа	Дебит жидкости, м³/сут
259	2963-2966	2300	Хвостовика нет	23.07.08	16	77	2092	1,83	21
534	2547-2549 2553,5-2558,5	2300	2500	13.05.08	16	108	2239	2,15	21
537	2713,5-2718,5	2300	2600	9.07.08	16	99	2293	2,01	19

70005Г, 71003 и 71005...»), которые приводятся в действие от одного силового ЭЦН, с первого взгляда может показаться, что скважина 70002Г, где дебит жидкости составляет 29 м³ в сутки, а динамический уровень — 913 метров, вполне пригодна для эксплуатации с помощью ЭЦН.

Мы предложили новую технологическую схему станции для привода гидроструйных и гидропоршневых насосов с возможностью индивидуального замера дебита добываемой продукции

Дело в том, что данные параметры были получены после многолетней эксплуатации скважин гидроструйными насосами, а восемь лет назад скважина 70002Г давала не более 7,6 м³ в сутки, а 70005Г вообще не давала ничего.

Сама по себе данная силовая станция гораздо дешевле, чем традиционная компоновка с применением импортных плунжерных насосов

Кратное увеличение дебита этих скважин было достигнуто за несколько лет посредством очистки призабойной зоны и улучшения продуктивности при постоянной гидроструйной эксплуатации.

За это время не было ни одного подземного ремонта и глушения скважины. При этом скважина 71003 была выведена из бездействия, а скважина 71005 переведена с механизированной добычи ЭЦН, поскольку была подвержена частым ремонтам, а ди-

Внедрение гидроприводных способов добычи позволит освоить многие из бездействующих скважин и запустить их в нормальную эксплуатацию

намический уровень составлял 1564 метра при глубине скважины всего 1700 метров.

Новая схема

По результатам эксплуатации силовой станции на кусте Самотлорского месторождения были

ВОПРОСЫ ИЗ ЗАЛА

Вопрос: Вы закачиваете дополнительную жидкость струйным насосом. Не происходит ли при этом образование более стойких эмульсий?

А.Д.: Струйный насос работает на добываемой из скважин продукции. Если образуется стойкая эмульсия, то в гидроприводной схеме можно очень просто с этой эмульсией бороться. Так как у нас рабочая жидкость циркулирует по замкнутому контуру, то с помощью дозировочного насоса можно добавить реагент-деэмульгатор и эмульсия не будет мешать работе оборудования.

Вопрос: И жидкость должна быть совместимой, чтобы соли не выпадали при смешении?

А.Д.: Вся эта система работает на скважинной продукции, и если есть опасность отложения солей, то нужно дозировать реагенты, чтобы не произошло засорения насоса.

Вопрос: Существует ли опыт гидропоршневой эксплуатации в России?

А.Д.: В мире есть огромный опыт гидропоршневой эксплуатации. В России последний гидропоршневой насос уже лет 10 назад был извлечен из скважины. Могу рассказать о том, чему был свидетелем в 1995 году на Вынгапуровском месторождении. Мы на Вынгапуре внедряли насосно-эжекторные схемы ЭЦН со струйными аппаратами. И внедрение было как раз на тех кустах, где скважины эксплуатировались гидропоршневыми насосами.

Там в то время работала сервисная компания, которая творчески подходила к делу и комбинировала гидроструйный и гидропоршневой способ добычи. И были весьма хорошие результаты в осложненных условиях. Например, когда нужно было освоить скважину, вначале спускали с помощью гидравлики струйный насос, скважину осваивали, а через два-три месяца спускали гидропоршневой насос с гораздо большим кпд по сравнению со струйным аппаратом, около 80%, и эти насосы успешно работали.

Что касается причин отказов, которые там были, — в основном выходил из строя золотник. В этом случае гидравликой поднимали гидропоршневой насос из скважины, меняли необходимый элемент и потом снова с помощью гидравлики опускали насос на забой скважины.

Нужно отметить, что Вынгапуровское месторождение весьма сложное — пласты глубоко залегающие, нефть имеет высокий газовый фактор, достигавший 180–200 кубометров на кубометр жидкости. И в этих условиях оборудование работало. Его эксплуатация была прекращена не по технологическим причинам, а из-за особенностей нашей национальной экономики.

Реплика: Скорее всего, там было громоздкое и дорогостоящее наземное оборудование, которое требует постоянного и очень хорошего обслуживания...

А.Д.: Да, поэтому мы и хотим уйти от этого громоздкого, дорогостоящего оборудования, сведя его к хорошо знакомому любому нефтянику погружному центробежному насосу, который будет работать в необслуживаемом варианте до тех пор, пока не сгорит. А в шурфе он работает в вертикальной части, в более благоприятных условиях.

В США, например, сопоставимы объемы применения гидропоршневых и погружных центробежных насосов. Очень широко применяются гидроприводные способы при эксплуатации скважин на шельфе.

Так, на шельфе Индонезии они используются для добычи в осложненных условиях при низких забойных давлениях. А на шельфе Средиземного моря, на одном из итальянских месторождений, струйные насосы, как ни удивительно, добывают нефть повышенной вязкости. То есть, и гидропоршневой, и гидроструйный способы за рубежом применяются гораздо шире, чем у нас.

Технологическая схема гидроструйной эксплуатации скважин с приводом от силовой мини-станции

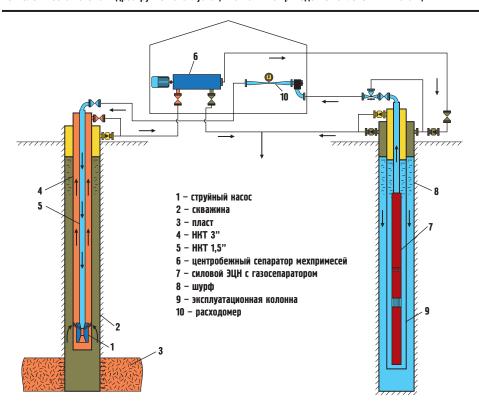


Фото 1 — Внутренний вид технологического блока мини-станции (на переднем плане центробежный сепаратор механических примесей)

Фото 2 — Устьевая обвязка шурфа мини-станции, в который спущен силовой ЭЦН

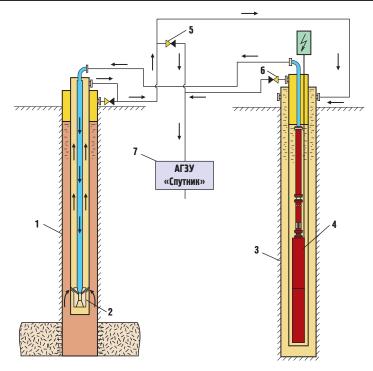
Фото 3 — Скважины куста 670Б Самотлорского месторождения, оборудованные беспакерными ГСН с двухрядным лифтом

выявлены не только ее плюсы, но и минусы. В частности, не удалось полностью автоматизировать замеры. На кусте работают две автоматизированные групповые замерные установки «Спутник». Одна АГЗУ измеряет суммарный расход рабочей и добываемой жидкости по каждой скважине, вторая — суммарную добычу куста.

Мы предложили новую технологическую схему станции для привода гидроструйных и гидропоршневых насосов (см. «Новая технологическая схема...»). Ее основная отличительная особенность состоит в том, что появляется возможность индивидуального замера дебита добываемой продукции, а не просто смешанного потока, который идет из скважи-

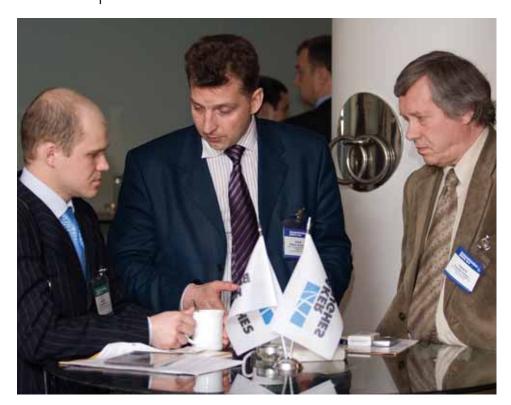
ны. Кроме того, установка ЭЦН оборудована не наземным, а погружным центробежным сепаратором мехпримесей, исключающим сброс грязной жидкости в линию, который ранее вносил неопределенность в замеры.

По мере поступления жидкости из пласта и наполнения шурфа давление в линии увеличивается и открывается обратный клапан 5.


Параметры эксплуатации беспакерных компоновок ГСН в скважинах 70002Г, 70005Г, 71003 и 71005 куста 670Б Самотлорского месторождения с приводом от силовой мини-станции

№ скв.	Глубина спуска струйного насоса, м	Давление нагнетания рабочей жидкости, МПа	Расход рабочего агента, м³/сут	Дебит жидкости, м ³ /сут	Обводненность, %	Динамический уровень, м	Затрубное давление, МПа
70002Г	1600	16	95	29	41	913	1,93
70005Γ	1720	16	95	54	43	1107	2,24
71003	1860	16	95	49	85	905	1,91
71005	1700	16	95	25	65	1564	2,34

Примечания: 1. Ранее скважины 70002Г и 70005Г были оборудованы пакерными насосами, в 2002 году одна из них (70002Г) давала не более 7,6 м3/сут, другая (70005Г) не давала ничего. Таким образом, за несколько лет достигнуто увеличение дебита по этим скважинам более чем в 10 раз


^{2.} В ноябре 2008 года была выведена из бездействия скважина 71003 и переведена на гидроструйный способ с механизированной добычи УЭЦН часто ремонтируемая скважина 71005

Новая технологическая схема станции для привода погружных гидроструйных и гидропоршневых насосов

- 1 добывающая скважина
- 2 гидроприводной насос
- 3 шурф
- 4 УЭЦН с газосепаратором и погружным центробежным сепаратором мехпримесей
- 5, 6 обратные клапаны
- 7 АГЗУ «Спутник»

Дает возможность полного контроля работы скважин, оборудованных гидроприводными насосами, с автоматизацией, которая обеспечит удобную эксплуатацию силами промысла, без привлечения дорогостоящих сервисных подрядчиков

Добытая из скважины продукция направляется в «Спутник», где замеряется. А расход рабочей жидкости нетрудно, как и в прежней компоновке, померить тем же «Турбоквантом» или иным расходомером.

Предложенная схема позволяет обеспечить полный контроль работы скважин, оборудованных гидроприводными насосами, и обслуживание гидроприводной эксплуатации силами персонала нефтяного промысла без привлечения дорогостоящих сервисных подрядчиков.

Сама по себе данная силовая станция гораздо дешевле, чем традиционная компоновка с применением импортных плунжерных насосов. Шурф, являющийся накопительной емкостью, — это один из вариантов исполнения. В тех районах, где шурфы по какимто причинам забуривать не удается, например, из-за геологические осложнений, вечной мерзлоты и т.д., возможно применение горизонтального многоступенчатого центробежного насоса и небольшой емкости 5-6 м³, работающей под линейным давлением.

Таким образом, несложные изменения в технологической схеме станции дают возможность массового перевода скважин на гидроприводные способы добычи вместо использования погружных центробежных и скважинных штанговых насосов. Естественно, такой перевод целесообразен только для осложненных скважин в тех случаях, где серийное оборудование ЭЦН или СШН работает неэффективно или ненадежно.

Практически всеми специалистами отмечается наличие в стране большого фонда бездействующих скважин. По разным оценкам, их насчитывается примерно 16% от общего числа, то есть около 25 тыс. скважин, и еще 9% — примерно 14 тыс. скважин — находятся в консервации.

Внедрение гидроприводных способов добычи позволит освоить многие из этих скважин и запустить в нормальную эксплуатацию, получив при этом дополнительную добычу нефти с повышением нефтеотдачи пластов и достижением существенного экономического эффекта.